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The author applies the geometrical method of investigation of the motion of a body with a 

fixed point 121 to the earlier solution obtained in [l]. Moving and stationary hodograph of 
the angular velocity of the body is constructed for all values of the parameters of the sys- 
tem. 

Motion of a rigid body with a fixed point in the homogeneous gravity field is described by 

A .!$ = (B - C) qr + (c2va - erva) r, f$ -= rv:, - qva 
1 a 3 

( ) ABC (0.1) 
POT 

where c 1, c 1, ej denote the unit vector with its origin at the fixed point and directed to- 
wards the center of mass; r ia the mass of the body multiplied by the distance between the 
canter of mass and the fixed point and trt , u2, v1 denote the unit gravity vector. Other no- 
tation follows the accepted usage. 

When the conditions 

‘h 
(0.2) 

es = 0. Cl = CO8 8. ca = sin 8, igiz- 
( 

A (C-B) (2C - A)’ 
C(A-B)(C -Z2A)3 1 (C>2A >2B) 

hold (it was shown in [l] that they hold e.g. in the case of a rigid body with cavities filled 

with fluid), Eqs. (0.1) have the following solution [I]: 

Ap=B(cos~++siu~cosa), 
UC - 2A)(2C - 

4=Pi, 
-4) 

Cr=j3(sinp-Kcosp cost), ,3ACN > 

“* 
sin c 

v1H = (3AC - 2.4B + BC) cos p + 3X x sin p cos c - 3A (C - B) cos p cosr Q (0.3) 

voHv’ = ~3.-fc (C - 2~) (2C - _A)- [B - 3x (4: ~2J~$~A~))“’ cos c] sin c 

%H = (3AC - 2BC + AB) sin p - 3.4C x cos p cos 6 - 3C (A - B) sin p COP 6 

c (:I 
sin p = 

.4 (C - B) (2C - A) ‘/* 
cosp= 

H(C- A) > 

X’( 
3AC-2B(.4 + C) ‘Is 

3.4c 

p= 
9.4wr Jfc - .-L 

vkf [A(C - B) (ZC- A)s+C(.J- B) (C -2.4)3]’ 
H=3AC- B(A +C) 

while 
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(9.4) 

(c - 2.4) (2C - A) (3X - 2AB - 2BC) ‘A 
I(,= 3(A+C)~(.-l--B)(C--) 

gives the time relationship. 
Let us diacuss this solution from the kinematic point of view. 

1. Let US introduce the following dimensionless parameters 

K 23 
k 

c- A 

=z-q=E* “=C+A 

(k>O, i>n>O) 

Then 

Condition (0.2) yields 1 + n > 2(1 - n) > 2k, 

Fig. 1 Fig. 1 shows the (n, k)-parametric space satis- 
fying the above inequalities. Henceforth we shall 

call this space, in short, the “trhgle”. 
In the n, k notation, solution (0.3) become 

P- i &fl(cOsJL+xsinpms@. r=$&n(sittp--cospcos@ 
-- 

(14 

$k( 
9nl- 1 

> 

‘I¶ 
4’ 

3 (I - nf) h sin 0 

tik=[3-3n’+k(3n-l)]cos~++(i-n~)Xsinf.tcoss- 

--(I---)(I +n-k)cospcos?o 

v& fi = [k v3 (l-/G) (%c? - I) - 3 f(i - n?) (3 - 3n’ - 4k) (i - 2k + A-_ x 

X Cos d ] sin Q (I -2) 

v~h= [3-3nx--k(3n + i)Jsinp--3(1 -n~)~cos~cos~-3((i +n)(i-n-k)sinpcos*a 

(1.3) 

cosp= (i -I- 8).(3n - I) (i - n - k) ‘&, sin p _ (1 
2nh 

- n) (3n + I) (1 + II - k) ‘h 
- 

2nh 

( 

4.6 ‘I* 
x= f--3(1 - n’) 1 

fi= = 9rl3 (i - n*p JS 

k vhI(1 
-- 

-n)(l+n-k)(3~r+l)S+(l+~)(1-n-k)(3n-l)SJ 

T = G 3&a J&.-l (i - ti + k’J - IL’) t, h=3-3nf-2k 
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(Da’- I) (3 - 3n’ - 4k) 

> 
‘/l 

Id,= 
12 (i --++kf-nn’) 

We note that for n, k lying on the carve 

2, (n, k) s 9n’ + 6k - 5 - 0 

(1.4) 

II. = 1. This parabola touches the hypotenuse at the point P and divides the triangle into 
two regions; on the left-hand side of the parabola we have I(+ < 1, and on the right side we 
have t4 > 1. 

2. Let us now introduce the following relation: 

2v k -_- (PO Qt r) = 3 R 4 _ ux (P’. 9’. r’) 

Omitting the primes we obtain, in place of (1.1). 

P = */* (i + n) (cos p + x sin ft cos a), r = r/x (1 - n) (sinp 

q = */% jl/3hw1 (9d - I) (1 - 18’) sin 0 

Eliminating o from (2.1) we obtain 

2 2 

3 (4 + 11) 
pcosp+3((i_n)rsinp=l 

Expression (2.1) yields also another expression, viz. 

2 2 
-psiOp-33rcosp=xc0so 
3(1+c) 

Eliminating now (I from (2.4) and (242) we obtain 

- x co9 )I CUS u) (2.1) 

(2.2) 

(2.3) 

(2.4) 

2 sin p zcosp 

3(i+n)~p-331-n)~r > 
‘f. j (9G --Y) (1 - n?) QZ = f 

In the (p, q, r) - space associated with the body, Eq. (2.3) defines the plane parallel 
tc q and (2.5) defines an elliptic cylinder. The line of intersection of these two surfaces 
constitutes the moving hodograph. 

Rotation of the p, q, r-axes about q by the angle E 

‘I’ /(2.3) 

Fig. 2 

represents the transformation to the S, q, s taxes and 
(2.5) becomes, in this system 

(2.Q 

1 = 2 f(l - 11) 

3 (1 - nr) 

? sin* ).a + (1 + n)? cosf p 

II= -;- 1/3h-1(9/$- 1) (1 - n?) 

This is an elliptic cylinder whose axis is S. 
Fig. 2 shows a moving axoid-cone, and the ellipse 

produced by the intersection of the cylinder (2.6) with 
the plane (2.3) is its directrix. 

We note that the points of the bodograph lying on 
the straight line (2.3) satisfy the condition q = 0 and 
this, according to (2.2), takes place when o = 0, u. 
From (1.3) we find that sin2p - eos2p > 0 and that 

Formolas (2.1) yield now p > 0, r > 0, for a= 0 andp < 0, r> 0 fora= n aud these points, 

which belong to the moving hodogaph, are indicated on Fig. 2. 
From (0.4) we have 
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Q 

s da 
‘c= 

Q 
P, + 42x3 J 

When ~1 > 1 and da/d7 > 0, (t increases without bounds, and the whole ellipse servea 

as the hodograph, We can therefore assume that at the initial instant u= 0 and, that it in- 
increases so that q goea from zero to the positive values. 

When ua = 1, the extremity of the vector of angular velocity approaches the point 05 n 

asymptotically, Starting from an arbitrary initial position, o will move in the direction 
shown on Fig. 2, since do Id T > 0. 

Wfren 0 <u+ < I, such values of fo can be found within the intervals (- rr, - %n) aud 

(!$v, tr), that COB (fcr*)= -u*. The corresponding points on the ellipse are asymptotic for 
the extremity of o. If at the initial instant us + cos D > 0, we have 

eoss>- U, = cos5,, -G.<G<G., g>o 

while if II+ + cos (I < 0, we have 

COSG<-U.=COSCI*, - Jt <o <-- 5,. %<J<G $<O 

Broken arrows on Fig. 2 show the direction of motion of O. Thus the character of the mo- 
tion depends on the position of the point (n, k) corresponding to the given values of A, B 
and C within the triangle. 

3. It was shown in [2] that the knowledge of the following three ma 
$ 

itudes 
for construction of the stationary hodograph: IL) Z(O).-= O(G) u&r) and op b) 

is2 required 
= C& 6) - 

- 01%) which represent, respectively, the axial and radial component of the angular vel- 
ocity, and the third cylindrical coordinate a defined by 

$1 v* va 

oa* s =E p 4 r 

Potting now 
dp/& dqfds drfda 

COSG = U 

we obtain, taking (I.11 to (I.31 into account, the required magnitudes 
(3.1) 

12 
OS -_ h (1 - ,* + kf - (4 

2k) [ u? $ + up $- - 
- n’f) (1 + W) - i Zkn’ 
8(i-n*+k’--2k) 1 (3.21 

+ 
3(1--n2)?(2-3.7k)1 4(~-3&)@~ 

z (i -n?+ k”-_k) J (3.3) 

where 

z 
% 

z 0% 
- y* = iv (u $ u,)’ (u + JJJ) (JJ* - u) (3.4) 

dn 
-=: 2‘ 

(u + u5) (KJ - u) 
__I___ 

dcr (u + 4) (u f- I(l) (uz.-- u) 

N 
81 

=~(f-nT)~(l--n~-i k’-2k)f, 
h% 

The quantity u+ is given by (1.4) and ur 
L=2)/3(i-ur+kf-%z 

(3.Q 

l 
z are positive within the trimgle. 
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Eliminating u from (3.2) and (3.3) and writing the left-hand aide of (3.2) as opz + oL2, 

we obtain 

[Up2 + (Or - c# - c,]? - cs (Or + c,) = 0 

2 h -- 
cl= 3 i_$’ 

c, = (1 + 3n’) (h - 2k)? 

I:! (i - .‘)i 

c. = (gn;7(;yn-F)J (3.7) 

3 (5 + 3n?) (h - 2k) - 3% 
cc = ___--- 48 (I - n?) 

This curve lies in the (~p~~)-plane and represents the 

meridian of the surface of revolution containing the sta- 

tionary hodograph. Let us construct this hodograph. When 

op= 0, (3.7) yields the following polynomial 

f (0 r. ) ?z (0 < - I)? (WC - tic’) (y - UC.) 

where (3.8) 

Fig. 3 

3h--2k 
--_ 

UC’, UC. = 
h--k ‘Jnf -_ 1 

---->I 

The derivative do c/d up obtained from (3.7) becomes 

zero at cd+,= 0 and cd,,= kod and 

Considering the second derivative we find, that the 
curve has a maximum at the points (0, o ‘) and (0, COG”), 
and a minimum at the points (k:“+,*, QC *i. The value of 

CJ~+ is obtained from (3.7) putting<tip = <I’; (3.10) 

or+* = (1 - li2)-1 [3/3 h - ‘/Ill (5 f- 3n2) (h - 2k)j < 1 

Fig. 3 shows the curve (3.7). A question arises whether 

the hodograph will pass through the point /I (Fig. 3). Put- 

ting@{= 1 in (3.3), we obtain the following two values 

2k 
---_-- u U(1) = -~- ;j (1 .__ ,‘?) . . t(1) -L.z -- If* 

From (3.4) it follows that w (u 
’ 

) f 0 and CJ (u 
H! The stationPary(? 

) - 0, consequently the values ohtain- 
- ed correspond to the points E and odograph will pass through the point 

yFif I ;p!= I u+ < 1, ajtd this condition is fulfilled when n, k lie to the left of the curve 1 1 I 
ig. . rguments given in Section 2 lead to conclusion that D is achieved asymptotically 

ast+m. 
In addition we shall write the following Expressions 

dad I au =I. - 4h’ (u + u.) (u +: us) (u - ue) (3.11) 

o dcz 
i-L tg x= do, 

(U’S u3) (w - u) 
-.. 

2 (u + us) (u - us) VI - u’ 
(3.1’) 

(3.1::) 

us,0 = u. 
I 

(‘-- n’ + 2k)z 

lci (1 _ n?)‘i + 
2k?-k(3n~+5)+4(i - n) ‘It 

(I- n?) (‘Jr,?- I) ) f 
i-nn”+2k ,. 

4(1 -nn3) 3 

4. The type of motion depends, naturally, on the character of ut,..., ug defined by For- 

mulas (3.6) and (3.13). 
We find that at > 1 and ug > 1 within the triangle, while u2 and U, both become equal to 
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unity on the hyperbola 

which touches the leg of the right angle at the point P and haa the direction cosine equal 
to - X on the approach to Q (Is and subsequent curves are shown on Fig. 1). With exception 

of the points on I,, xx > 1 within the triangle, IL, > 1 above the hyperbola and IL, < 1 below 
it. 

On the curves I, (n, k) SJ u,(n, k) - I = 0 and I, (n, k) s ue (n, k) - I= 0, we have s5 - 

= u6 = 1. The curve 1, touches the hypotenuse at the point Q and passes to the point p, for- 
ming the angle arc tg 2/3 with the vertical leg of the right angle. The curve 1, passes 
through P at the same angle but is situated near the vertical leg and touches it ou the 
approach to the abscissa; ue > 1 above 1, and us < 1 below it, us > 1 to the right of 1, and 

us < 1 on the other side of I,. 
All these curves divide the triangle into 8 regions. Both, the moving and the stationary 

hodograph or, in other words, the whole pattern of motion of the body, will depend on the 

particular region in which n and k, known for each specific example, are found. 

II. The motion can now be interpreted in the following order. We COUStNCt the moving 
hodograph using the Formulas of Section 2. Expressions (2.1) and (2.2) make it possible to 
set up a correspondence between d and the points on the moving hodograph. If the point US 
lies within the interval (- l,l), then the point on the hodograph will correspond to the value 
C+ = arc cos (- u+) and o will approach this point asymptotically. 

Using (3.8) to (3.10) we can construct the surface (3.7) for the specified values of n and 
k. 

Let the initial value uu be given; o 
position of the moving axoid on the i* 

(u,) can be found from (3.3). This will define the 
eta tonary axoid at the initial instant (Fig. 3a shows 

tbe initial parallel on the surface of revolution). while Fig. 3 b represents the projection of 
this surface on the plane <- 0. First (3.11) and second derivative of oP2 show that oP2 is 

maximum at I) = uu and the outer circumference on Fig. 3 b corresponds to the parallel u = ue. 
The parallel corresponding to u = uu is also shown. 

The angle a is counted from the radius 00 t (Fig. 3 b). 
The formulas available throw some light on the character of the stationary hodograph. 
From (3.12) it follows that tg x becomes infinite at u = ae, and at u = f 1 it approaches . 

these parallels tangentiall. When u = u,, Y. = 0 and the curve touches the radius on this par- 
allel (we discnss here a general case; a case such as e.g. u = u, = ue should be considered 

particularly). 
The sign of the derivative da /doI, = ug obtained 

from (3.5) will decide the left or right direction in which 
the curve will move away from the vertical radius. 

Fig. 3 shows also a part of the curve corresponding 

to the case when da/do k > 0 and tg XI,, is different 
from zero and infinity. Angle a can be found (wftb 
(3.1) taken into account) as follows: 

am cos u, 

a,=L 
s 

(cos d + Uj) (1Q - co.7 G) lfc 

arc CO9 u, (cos 5 + U.) (cos 3 + 4 (h - cos 4 

Depending on the value of u+. the curve will either 

wrap itself around the center of the circle on Fig. 3 b md 
approach the point D on Fig. 3a (u+ < l), or remain with- 

in the annulue between two parallels u = f 1 (u, > 1). 

I6 
Let us follow the progress of the moving axoid along 

Fig. 4 
the stationary one in the following three, most typical 

cases. Let us consider the points 1 (0.34, 0.37) and 4 
(0.74, 0.23) where the digit outside the bracket indicates the region of the triangle in whfch 

the point in question lies, and the numbers within the brackets are the values of n, k; 
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2 (0.57, 0.33) is tbt point of intersection of the curves 1, and 1,. Below we give the values 

of the parameters required in constroctIn~ tbe flow 
lx I1 e q’ ata O-J<* op+ 

i o.o5p+ i.Oir = 1 1.32 0.16 78” 1.79 1.96 0.99 0.04 

6 0.08~ + 2.52r = 1 0.87 1.23 36” f.18 2.04 0.92 0.20 

II O.llp+~1.52r=1 1.00 0.P6 45” 1.33 2.00 0.96 O.lG 

Cl Ca % cr U* U1 ua US u4 

1 1.44 0.19 0.01 0.99 0.16 1.25 1.16 1.05 0.96 

6 1.31 0.19 0.11 0.92 1.92 2.44 1.12 2.29 1.34 

11 1.33 O.lG 0.07 0.9G 1.00 1.66 1.00 1.49 1.00 

% u6 N L x o&--l) op(O QU6) 

1 0.93 0.17 0.37 1.44 0.66 0.37 0.42 0.50 

6 2.27 0.32 0.03 1.24 0.56 0.31 0.36 O.G4 

II 1.45 0.45 0.14 1.33 0.58 0.00 0.00 0.59 
Fig. 4 shows the graphs of Ok for the above cases. 

b 

Fig. 5 
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P o i n t 1. Here u+ < 1. Let us take uo = 1 (go = 0) as its initial value; the derivative 

da /do),=l < 0 and remaius until II, decreasing in value from II = 1, reaches the valoe a = 
=!.I , . Then we have d a/do1 ucu, > 0. The curve (Fig. So) intersects the perallel a = a, 

at right angles (tg Y. Iuzu, = 0) when Q = - 3O and turns to the right. Maximum value of 

op is reached at a = So (tangency with u = u ). AS u approaches - us, the curve begins to 
spiral about the center. The Figure shows bo %* the moving and the stationary hodograph. 

The point of the moving hodograph corresponding to the value Q* = 100° approaches the 

point D asymptotically as the moving axoid rolls on the surface of revolution. 

Fig. G Fig. 7 

Fig. 56 shows what happens when the value no = - 1 is taken, with everything else un- 

changed. The moving axoid rolls, in this case, on the inner part of the surface of revolution. 

At the point 6 we have U* > 1, consequently the angular velocity vector makes a complete 

circuit around the moving hodograph. We have taken u. = I as the initial value on the Fig. 6 
and the stationary hodograph is contained between the parallels II = f 1. At the point 2 we 
have II+ = 1, u 
originates at t i: 

= 1 andu,= 1, therefore@ 
e apex of the surface (Fig. ? 

f (1) = 0. When ug = 1, the stationary hodogaph 
), intersects’ the parallel u = u6 at a I 43’ and 

approaches the point D asymptotically as u + - 1. At the same time the extremity of the vet 
tor o on the moving hodograph approaches the point o, = n. 
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