KINEMATIC INTERPRETATION OF THE MOTION OF A
BODY WITH A FIXED POINT

PMN Vol. 32, No. 2, 1968, pp. 298-305

E.I. KHARLAMOVA
(Donetsk)

(Received May 29, 1967)

The author applies the geometrical method of investigation of the motion of a body with a
fixed point [2] to the earlier solution obtained in [1]. Moving and stationary hodograph of
the angular velocity of the body is constructed for all values of the parameters of the sys-

tem.
Motion of a rigid body with a fixed point in the homogeneous gravity field is described by

dp dv, 123
A—:(B—C) qr +(C3‘V3— ea‘Vg) F, ——==TrVs — qV3 ABC (Oi)
d at e

where ¢,, €5, ¢ denote the unit vector with its origin at the fixed point and directed to-

wards the center of mass; I is the mass of the body multiplied by the distance between the

center of mass and the fixed point and v, v,, ¥; denote the unit gravity vector. Other no-

tation follows the accepted usage.
When the conditions

(0.2)
(C>24>>2B)

- _ e . {A(C—B)(2C — A"
es=0, e;=c088, e3==35in, igo-= —(C(A——B)(C — 2A)3)
hold (it was shown in [1] that they hold e.g. in the case of a rigid body with cavities filled
with fluid), Egs. (0.1) have the following solution [1]:

Ap =B (cosp + x sin p cos s), . 16— 24)2C — -4))'/'s.n ]

== ———aa A 1
Cr =B (sinp — y cosp cos ), \ 3ACH
wH = (3AC — 2AB + BC) cosp +- 3AC y sin p coss — 34 (C — B) cosp cos*s (0.3)

- L - 'h .
veli' =Y 34C (C —24) (2C — H) [B — 3y (A(f SZA)B()Z((}'P— AB;)) cos c] sing

v3H = (34AC — 2BC + AB)sinp — 3.AC % cosp coss — 3C (4 — B) sinp cos®s

C(4— B)(C— 24\ . A(C— B)(2C — AN
°°3P‘=( HIC—1) ) s“‘l‘=( H(C—A) )

34C —2B(4 + C©h'"
x= ( 34C )
g — gacr yc—4 ,
T VH[A(C=B)RC= AP+ C(d—B)(C =23y
while

H=3AC— B(4+0C)
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de

T =Y. 4 cosg (0.4)
A4C(3A—B)(C— B))"
=183 ( H ,

(C—2.4)(2C — A)(3AC—-24B——2BC))
"°“‘( 3(A+ CF(A=B)(C— B)

gives the time relationship.
Let us discuss this solution from the kinematic point of view.

1. Let us introduce the following dimensionless parameters

'zl 2B C— A4
=a+c R=ECFA

(>0, 1>n>0)

Then
{—n 1 +n
A= % B, C = k

Condition (0.2) yields 1 +n > 2(1 —n)> 2k,
from which

Ys<n<lH, 0k nt kLA

g ’/3 ! 7 follows.

Fig. 1 shows the (n, k)-parametric space satis-
fying the above inequalities. Henceforth we shall
call this space, in short, the ‘‘triangle’’.

In the n, & notation, solution (0.3) become

B _k D k
P="F 7= (cosp -y sin p cosa), r=%1+,,(sinlt-—x00w°°3°)

Fig. 1

(1.1)
B On® -1 '/s'
q=?k(3(l—lz’)h) sin o
=[3—3n+4k(3n— 1)) cosp + 3 (1 — n?%) y sin p cos 3 —
—3(1—n)(1 4+ n—k)cospcosts

vh Vh=[k V30— 0" —1)—3 VA=) (3—3n* —4k) (1 — 2k + kT = n%) x
X coso]sing {1.2)

Vsh=[3—3n? —k(3n +1)] sinp — 3 (1 — n?) y cos p cos 5 — 3 (1 + n) (1—n—~k)sin pcosrs

A+a)(3r—1)d—n—kp" 1 —n)(3n-+1) (1 —kpn
cosp= 0 d—n ))'mp:(( nhSn 1t +n ))

A

x=(i d(,“ .)) (1.3)

9PB(1 — %) V2x
kVA[{—a)({+a—k)@n F 1P+ (1 F.) (1 — n —k) (3n — 1))

BS

v 2k .
YT=F 3 an V¥ (1 —Z%+F—nft, h=3—3n"—2
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_ ((ous— 1) (3— 3n% — 4kp\"
Ye= N2 =26+ F*—nY) ) :
We note that for n, k lying on the curve
L(n, k) =9n* 4 6k —~5 =0
us = 1, This parabola touches the hypotenuse at the point P and divides the triangle into

two regions; on the left-hand side of the parabola we have u+ < 1, and on the right side we
have us > 1.

(1.4)

2. Let us now introduce the following relation:
(r. 9 r)=—2——2--—k—( ' g
9 3 Bi—mP a7
Omitting the primes we obtain, in place of (1.1),
p=23%s(1 + n)(cosp + y sin p cos o), r=3%,(1—n)(sinp —y cospcuso) (2.1)

g=1 V371 (902 — 1) (1 — n¥sinc (2.2)
Eliminating o from (2.1) we obtain
2 2 .
mpmsp—fwrsmp:l (2.3)
Expression (2.1) yields also another expression, viz.
2 . 2
mPSlnH~§‘(1—_Tjrcosp=xcosc (2.4)

Eliminating now ¢ from (2.4) and (2.2) we obtain
2sinp 2cosp 2 4h .
(3(1+n)x”— 30—n) x') tsge—na—m7 ="
In the (p, g, r) — space associated with the body, Eq. (2.3) defines the plane parallel
to ¢ and (2.5) defines an elliptic cylinder. The line of intersection of these two surfaces
constitutes the moving hodograph.
Rotation of the p, g, r-axes about ¢ by the angle ¢

2.5

tre — TP
gE=11"n tgp
represents the transformation to the s, g, s ~axes and
(2.5) becomes, in this system (2.6)
<2 qz
2y + '[IT. =1
3(1—n?
l= LI
2Y (1 —n)¥sin?p + (1 + n)® cos®p

= —;~ V3R (9n: —1) (1 — n?)

This is an elliptic cylinder whose axis is s.

Fig. 2 shows a moving axoid-cone, and the ellipse
produced by the intersection of the cylinder (2.6) with
the plane (2.3) is its directrix.

We note that the points of the hodograph lying on
the straight line (2.3) satisfy the condition ¢ = 0 and
Fi this, according to (2.2), takes place wheno =0, 7.

ig. 2 From (1.3) we find that sin?pt — cos?u> 0 and that

Ym<u<hm

Formulas (2.1) yield now p > 0, 7> 0, foro= 0 and p <0, r> 0 for 0 = 7 and these points,
which belong to the moving hodograph, are indicated on Fig. 2.

From (0.4) we have
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< S da

=\ ———
u, 4 cos 3
G

When us > 1 and do/d7 > 0, 0 increases without bounds, and the whole ellipse serves
as the hodograph, We can therefore assume that at the initial instant 0= 0 and, that it in~
increases so that ¢ goes from zero to the positive values.

When us = 1, the extremity of the vector of angular velocity approaches the pointo=1n
asymptotically. Starting from an arbitrary initial position, @ will move in the direction
shown on Fig. 2, sinceda/d7> 0,

When 0 <u4 < 1, such values of ¢ can be found within the intervals {— 77, — %7) and
(}47, m), that cos (10 4) = — uy. The corresponding points on the ellipse are asymptotic for
the extremity of w. I at the initial instant ue + cos 0> 0, we have

do
COS 3 > u, == C0Sq,, —6, La<ld,, v >0

while if ue + cos 0 <0, we have

A ds
cos6 L —u,=cos5,, —nLoL—73, o Lsln, =<0

Broken arrows op Fig. 2 show the direction of motion of . Thus the character of the mo~
tion depends on the position of the point (s, £} corresponding to the given values of 4, B
and C within the triangle.

3. It was shown in [ 9] that the knowledge of the following three mag"z‘utudes is required
for construction of the stationary hodograph: w ;o) = @) vio) andw, 0) =@ o) -
-0y %0) which represent, respectively, the axial and radial component of the angular vel-
ocity, and the third cylindrical coordinate a defined by

Vi Vi v
da
W2 o
¢ “do P 1 !

. dp/ds dg/ds dr}ds
Putting now

€0%C = u 3.1)
we obtain, taking (1.1) te (1.3) into account, the required magnitudes

12 3 1 — n%) (1 + 9n?) — 12kn*
0% =—— (1 — n* + k* — Zk)[u'-' + . +( 8(:1-("’+:’~—2/€) n} 3.2)
3 ) »' »
oy =77 (1—a¥ + k*— 2k) [3(1——n-)u~ + (h+ 4k uu +
3(1 — a2 (2—3k) L 4 (1 —3n%) &%)
+ ZA—n T =2k ] 3.3)
0 =0 — o = N (u 4 u) (v + uy) (4 — u) (3.49)
dn (4 + us) (u; — u) ,
R R AN | CEES | P @)

where
2 u, 2h u 4 — 3k

z?i*"’[}’z(w-nik]' u“zT{(i“G""’ ) il}>°

K {3.6)

2YIA A+ =24
The quantity us is given by (1.4) and u, 5 8re positive within the triangle.

1
N=——2.-(1—n=y(1-n=-; k2 — 2%, L=
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Eliminating u from (3.2) and (3.3) and writing the left-hand side of (3.2) as @ pz + (o{z,
we obtain

"% [02 + (0 — e1)* — ea]* — 3 (0 +- i) =0
(s 2k (1430 (h— 2k
U=y A= 55 O=""T1 0 —nty
(9n? — 1) (h — 2k)3
€3 = T — P 3.7}
! U=Ug 35+ 3n%) (h— 2k)— 32k
wc G 481 —n%)
,” This curve lies in the (wpa)c)~plane and represents the
| meridian of the surface of revolution containing the sta-
/ /] tionary hodograph. Let us construct this hodograph. When
=5 £ wp=0, (3.7) yields the following polynomial
2| @, 1 (o) = (g — 1) (@ — 0') (0 — ")
_w; ’ a); where (3.8)
o, Bh—2k h— 2k 9n* 1
U=l Oy s O :3(1——11"):]—:3(1__,‘3) — 5 >1

The derivative dw{/do)p obtained from (3.7) becomes

. .
zeroat(op_Oandmp ia) and

h— 2/f
("p' =15 (1 ) 'I/ In? 4 34n? — 1), (3.9)

Considering the second derivative we fmd that the
curve has a maximum at the points (0, cu ) and 0, "),
and a minimum at the points (i(:)p‘, @ . The value of
(oL‘ is obtained from (3.7) putting Wy = (up’ (3.10)

o* = (1 —nr)? 5k — Y (54 3n%) (B — 2K)] <1
Fig. 3 shows the curve (3.7). A question arises whether
the hodograph will pass through the point D (Fig. 3). Put-
tingwy = 1in (3.3), we obtain the following two values
2k
YT ITT3IA S e ‘m
From (3.4) it follows that w (u% ) # 0 and @, (u f, = 0, consequently the values obtain-
o

ed correspond to the points E and The etatnonary dograph will pass through the point
D if|u,, | =|ue <1, and this condition is fulfilled when n, k lie to the left of the curve I,

2)
(Fig. 1 S Arguments given in Section 2 lead to conclusion that D is achieved asymptotically

ast o0,
In addition we shall write the following Fxpressions

Y

Fig. 3

e

do? [ du == — 4N (u 4 u,) (u 4 us) (u — ug) (3.11)
o, da (w4 ua) (ug — u) ;
== = . ———— 3.12
tg x do, L2(u+ us) (u— ug) Y1 — u? ©42
(3.13)
(1—n® 42 2K°—k@n245) 41—\ 1—n*42%
Us,e = U [( 16 (1 — n2)y* . (1 — n%)(9n*—1) ) 4(1 —n%) ]>0

4, The type of motion depends, naturally, on the character of u,..., u4 defined by For-

mulas (3.6) and (3.13),
We find that u, > 1 and uy > 1 within the triangle, while u, and u, both become equal to
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unity on the hyperbola
l(n, k) =9n* — 18 (k —?s' —1 =0

which touches the leg of the right angle at the point P and has the direction cosine equal
to — % on the approach to Q {/, and subsequent curves are shown on Fig. 1). With exception
of the points on I, u, > 1 within the triangle, u > 1 above the hyperbola and u, < 1 below
it.

On the curves I, (n, k) = us(n, k) ~1=0and!, (n, k)= u, (n, k) — 1= 0, we have ug=
=ug = 1. The curve [, touches the hypotenuse at the point @ and passes to the point P, for-
ming the angle arc tg 2/3 with the vertical leg of the right angle. The curve [, passes
through P at the same angle but is situated near the vertical leg and touches it on the
approach to the abscissa; ug > 1 above I, and ug < 1 below it, ug > 1 to the right of [ and
ug <1 on the other side of /,.

All these curves divide the triangle into 8 regions. Both, the moving and the stationary
hodograph or, in other words, the whole pattern of motion of the body, will depend on the
particular region in which n and k, known for each specific example, are found.

3. The motion can now be interpreted in the following order. We construct the moving
hodograph using the Formulas of Section 2. Expressions (2.1) and (2.2) make it possible to
set up a correspondence between o and the points on the moving hodograph. If the point u,
lies within the interval (- 1,1), then the point on the hodograph will correspond to the value
04 = arc cos (— u4) and ® will approach this point asymptotically.

Using (3.8) to (3.10) we can construct the surface (3.7) for the specified values of n and
k.

Let the initial value u, be given; w, (u,) can be found from (3.3). This will define the
position of the moving axoid on the staiionary axoid at the initial instant (Fig. 3a shows
the initial parallel on the surface of revolation), while Fig. 35 represents the projection of
this surface on the plane {= 0. First (3.11) and second derivative of @ ,2 show thatw ,? is
maximum at & = u; and the outer circumference on Fig. 3b corresponds to the parallel u = u .
The parallel corresponding to u = u, is also shown.

The angle o is counted from the radius 00, (Fig. 3b).

The formulas available throw some light on the character of the stationary hodograph.
From (3.12) it follows that tg x becomes infinite at u = ug, and at u = 11 it approaches
these parallels tangentiall. When u = u,, % = 0 and the curve touches the radius on this par-
allel (we discuss here a general case; a case such as e.g. u = u, = ug should be considered

particularly).

The sign of the derivative da /do|, - uo Obtained
.-J % /_"\(/) from (3.5) will decide the left or right direction in which

the curve will move away from the vertical radius.

o A od Fig. 3 shows also a part of the curve corresponding

Ji-U. U N Ue |74  to the case when da./dalo > 0 and tg %|, is different
5 » '3 0

. from zero and infinity. Angle @, can be found (with

N (3.1) taken into account) as follows:

/6} a, =1L e (c08 S - uy) (g — cosq) ds

“”5 , T arc 208 ug (cosc + u,) (cos 3 + uy) (¥s — COSG)
| Depending on the value of us, the curve will either
A< wrap itself around the center of the circle on Fig. 3b and
approach the point D on Fig, 3a (ue < 1), or remain with
_A /7 in the annulus between two parallels u = + 1 (us > 1),
P Let us follow the progress of the moving axoid along
Fic. 4 é the stationary one in the following three, most typical
LY cases. Let us consider the points 1 (0,34, 0.37) and 4
(0.74, 0.23) where the digit outside the bracket indicates the region of the triangle in which

the point in question lies, and the numbers within the brackets are the values of n, k;
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2 (0.57, 0.33) is the point of intersection of the curves [, and /,. Below we give the values
of the parameters required in constructing the flow

Iy 4 e o o of of

1 0.05p+1.01r=1 1.32 0.16 78° 1.79 1.96 0.99 0.04

6 0.08p4-2.52r =1 0.87 1.23 36° 1.18 2.04 0.92 0.20

11 0.1ip+1.52r=1 1.00 0.86 45° 1.33 2.00 0.96 0.16

131 c3 ¢ cs Uy uy Uq ug uy
1 1.44 0.19 0.01 0.99 0.16 1.25 1.16 1.05 0.96
6 1.31 0.19 0.414 0.92 1.92 2.44 1.42 2.29 1.34
I 4.33 0.16 0.07 0.96 1.00 1.66 1.00 1.49 1.00

u; Ug N L x (l)p(—i) (Dp(i) (l)p(us)

1 0.93 0.77 0.37 1.44 0.66 0.37 0.42 0.50
6 2.27 0.32 0.03 1.24 0.56 0.31 0.36 0.64

Il 1.45 0.45 0.14 1.33 0.58 0.00 0.00 0.59
Fig. 4 shows the graphs of(op(u) for the above cases.

Fig. 5
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Point 1. Hereu, <1 Letustakeu = 1(o, = 0) as its initial value; the derivative
da /doly~; <0 and remains until u, decreasing in value from u = 1, reaches the value u =
=u,. Then we have da/do| u<u, > 0. The curve (Fig. 5a) intersects the perallel u = u,
at right angles (tg * [,,, = 0) when @ = — 3° and tums to the right. Maximum value of
@, is reached at a = 5° (tangency with u = u_). As u approaches — u,, the curve begins to
spiral about the center. The Figure shows boal, the moving and the stationary hodograph.
The point of the moving hodograph corresponding to the value o4 = 100° approaches the

point D asymptotically as the moving axoid rolls on the surface of revolution.

Fig. 6 Fig. 7

Fig. 5b shows what happens when the value u, = — 1 is taken, with everything else un-
changed. The moving axoid rolls, in this case, on the inner part of the surface of revolution.

At the point 6 we have u, > 1, consequently the angular velocity vector makes a complete
circuit around the moving hodograph. We have taken u, = 1 as the initial value on the Fig. 6
and the stationary hodograph is contained between the parallels u = t+ 1. At the point 2 we
haveuy =1, 4, =1 and u, = 1, therefore @ , £ (1) = 0. When u, = 1, the stationary hodograph
originates at the apex of the surface (Fig. ?), intersects the parallel u =ug at a = 43° and
approaches the point D asymptotically as u » — 1. At the same time the extremity of the vec-
tor w on the moving hodograph approaches the pointa, = 7.
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